## Novel [6 + 2] Cycloaddition of Fulvenes with Alkenes: A Facile Synthesis of the Anislactone and Hirsutane Framework

Bor-Cherng Hong,<sup>\*,†</sup> Yeong-Jou Shr,<sup>†</sup> Jian-Lin Wu,<sup>†</sup> Arun Kumar Gupta,<sup>†</sup> and Kuan-Jiuh Lin<sup>‡</sup>

Department of Chemistry, National Chung Cheng University, Chia-Yi, 621, Taiwan, R.O.C, and Department of Chemistry, National Chung Hsing University, Taichung, 400, Taiwan, R.O.C.

chebch@ccunix.ccu.edu.tw

Received April 30, 2002

## ABSTRACT



In contrast to the Diels–Alder reaction of fulvenes and various alkenes, 6-aminofulvenes react with maleic anhydride (or maleimide) to give [6 + 2] cycloaddition adducts, constituting an efficient and novel route to pentaleno[1,2-*c*]furan, pentaleno[1,2-*c*]pyrrole, and cyclopenta[*a*]-pentalene skeleton.

Cycloadditions of fulvenes (e.g., [4 + 3], [2 + 2], [4 + 2], [2 + 4], [6 + 4]) provide powerful synthetic approaches to various polycyclic systems and natural products.<sup>1</sup> In addition to these versatile reactions, we recently reported a novel hetero [6 + 3] cycloaddition of fulvenes for the synthesis of 11-oxasteroids.<sup>2</sup> In conjunction with our continuing efforts in fulvene chemistry,<sup>3</sup> we have now developed a [6 + 2] cycloaddition using 6-aminofulvenes and maleic anhydride

(or maleimide) for the preparation of pentaleno[1,2-*c*]furans and pentaleno[1,2-*c*]pyrroles. These compounds constitute the basic skeleton of many natural products such as anislactone A,<sup>4</sup> anislactone B,<sup>5</sup> merrilactone A,<sup>6</sup> merrilactones B and C,<sup>7</sup> and various other important synthetic intermediates.<sup>8</sup>

[6+2] cycloadditions of cycloheptatriene, vinylcyclobutanones, or azepine with alkenes are well precedented.<sup>9</sup>

<sup>&</sup>lt;sup>†</sup> National Chung Cheng University.

<sup>&</sup>lt;sup>‡</sup> National Chung Hsing University.

<sup>(1)</sup> For review of fulvenes and their synthetic applications, see: Neuenschwander, M. *Chem. Double-Bonded Funct. Groups* **1989**, 2, 1131– 1268.

<sup>(2)</sup> Hong, B.-C.; Chen, Z.-Y.; Chen, W.-H. Org. Lett. 2000, 2, 2647–2649.

<sup>(3)</sup> For previous papers in this series, see: (a) Hong, B.-C.; Shr, Y.-J.; Liao, J.-H. Org. Lett. **2002**, 4, 663–666. (b) Hong, B.-C.; Shen, I.-C.; Liao, J.-H. Tetrahedron Lett. **2001**, 42, 935–938. (c) Hong, B.-C.; Jiang, Y.-F.; Kumar, E. S. Bioorg. Med. Chem. Lett. **2001**, 11, 1981–1984. (d) Hong, B.-C.; Sun, H.-I.; Chen, Z.-Y. Chem. Commun. **1999**, 2125. (e) Hong, B.-C.; Chen, Z.-Y.; Kumar, E. S. J. Chem. Soc., Perkin Trans. 1 **1999**, 1135. (f) Hong, B.-C.; Hong, J.-H. Tetrahedron Lett. **1997**, 38, 255. (g) Hong, B.-C.; Sun, S.-S.; Tsai, Y.-C. J. Org. Chem. **1997**, 62, 7717.

<sup>(4)</sup> Kouno, I.; Mori, K.; Okamoto, S.; Sato, S. Chem. Pharm. Bull. 1990, 38, 3060-3063.

<sup>(5) (</sup>a) Schmidt, T. J.; Mueller, E.; Fronczek, F. R. *J. Nat. Prod.* **2001**, *64*, 411–414. (b) Huang, J.-M.; Yang, C.-S.; Tanaka, M.; Fukuyama, Y. *Tetrahedron* **2001**, *57*, 4691–4698.

<sup>(6) (</sup>a) Huang, J.-M.; Yokoyama, R.; Yang, C.-S.; Fukuyama, Y. *Tetrahedron Lett.* **2000**, *41*, 6111–6114. (b) For a recent total synthesis, see: Birman, V. B.; Danishefsky, S. J. *J. Am. Chem. Soc.* **2002**, *124*, 2080–2081.

<sup>(7)</sup> Huang, J.-M.; Yang, C.-S.; Tanaka, M.; Fukuyama, Y. *Tetrahedron* **2001**, *57*, 4691–4698.

<sup>(8) (</sup>a) Rosenstock, B.; Gais, H.-J.; Herrmann, E.; Raabe, G.; Binger, P.; Freund, A.; Wedemann, P.; Kruger, C.; Lindner, H. J. *Eur. J. Org. Chem.* **1998**, 257–273. (b) Michael, E. J.; Rayle, H. L. *J. Org. Chem.* **1997**, 62, 4601–4609. (c) Hoberg, H.; Nohlen, M. *J. Organomet. Chem.* **1991**, 412, 225–236. (d) Snyder, J. K.; Chen. Y. *Tetrahedron Lett.* **1997**, 38, 1477–1480.

<sup>(9) (</sup>a) Rigby, J. H.; Kondratenko, M. A.; Fiedler, C. Org. Lett. 2000, 2, 3917–3920. (b) Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R. J. Am. Chem. Soc. 2000, 122, 7815–7816. (c) Chaffee, K.; Huo, P.; Sheridan, J. B.; Barbieri, A.; Aistars, A.; Lalancette, R. A.; Ostrander, R. L.; Rheingold, A. L. J. Am. Chem. Soc. 1995, 117, 1900–1907. (d) Schmidt, T.; Bienewald, F.; Goddard, R. J. Chem. Soc., Chem. Commun. 1994, 1857–1858. (e) Fischler, I.; Grevels, F. W.; Leitich, J.; Ozkar, S. Chem. Ber. 1991, 124, 2857–2861. (f) Mach, K.; Antropiusova, H.; Petrusova, L.; Hanus, V.; Turecek, F.; Sedmera, P. Tetrahedron, 1984, 40, 3295–3302.

| Table 1. | Reaction of All     | kenes and Alkynes with Fu            | lvenes                                                       |                                    |             |                                          |                |
|----------|---------------------|--------------------------------------|--------------------------------------------------------------|------------------------------------|-------------|------------------------------------------|----------------|
| entry    | fulvene             | substrate                            | product                                                      |                                    | method      | time (min)                               | yield $(\%)^a$ |
| 1        | R NMe <sub>2</sub>  | 0 < 0 > 0                            |                                                              | 2. R = Me<br>3. R = Ph<br>4. R = H | A<br>A<br>A | 30<br>60<br>480                          | 81<br>73<br>70 |
| 2        | R NMe <sub>2</sub>  | 0 N 0                                |                                                              | 5. R = Me<br>6. R = Ph<br>7. R = H | A<br>A<br>A | 120<br>480<br>480                        | 75<br>66<br>65 |
| 3        | Me NMe <sub>2</sub> | 0 0 0                                | Me H O<br>Me H O<br>Me                                       | 8                                  | В           | 30                                       | 63             |
| 4        | Me NMe <sub>2</sub> |                                      |                                                              | 9                                  | A<br>B<br>C | 2880<br>2880<br>240                      | 0              |
| 5        | Me NMe <sub>2</sub> |                                      | Me <sub>2</sub> N Me                                         | 10                                 | D           | 15                                       | 56             |
| 6        | R NMe <sub>2</sub>  |                                      | R                                                            | 11. R = Me<br>12. R = H            | E<br>F      | 240<br>45                                | 65<br>75       |
| 7        | R = Me Ph H         | MeO <sub>2</sub> CCO <sub>2</sub> Me | Me <sub>2</sub> N H<br>MeO <sub>2</sub> C CO <sub>2</sub> Me | 13                                 | A<br>A<br>A | R = Me, 180<br>R = Ph, 180<br>R = H, 180 | 85<br>84<br>87 |
| 8        | Me NMe <sub>2</sub> | HCO <sub>2</sub> Me                  | Me <sub>2</sub> N H<br>H CO <sub>2</sub> Me                  | 14                                 | А           | 480                                      | 65             |

<sup>*a*</sup> Isolated yield based on starting fulvene. Method A: C<sub>6</sub>H<sub>6</sub>, 25 °C. Method B: microwave irradiation at 10 W in DMF, 120 °C. Method C: microwave irradiation at 30 W in DMSO, 150 °C. Method D: cat. BF<sub>3</sub>·OEt<sub>2</sub>, -78 °C, THF. Method E: 1 equiv of BF<sub>3</sub>·OEt<sub>2</sub>, reflux, THF. Method F: 1 equiv of BF<sub>3</sub>·OEt<sub>2</sub>, 50 °C, THF.

However, like cycloheptatriene, the [6 + 2] cycloaddition of fulvene has received little attention.<sup>10,11</sup>

fulvene. In our hands, addition of 6-dimethylaminofulvene (1) to a solution of maleic anhydride in benzene at 25  $^{\circ}$ C

Many papers have reported that, in general, fulvene reacts with maleic anhydride to give the [4 + 2] cycloaddition adduct,<sup>12</sup> (Scheme 1). In contrast, we have found that reaction of 6-dimethylaminofulvene (1) with maleic anhydride gave the intriguing pentalene derivative 2, (Scheme 2). To the best of our knowledge, this is the first reported synthesis of a pentaleno[1,2-*c*]furan system via a [6 + 2] cycloaddition of

<sup>(11)</sup> For addition of 1,3-di-*tert*-butyl-6-dimethyl-aminofulvene to alkynes, see: Hafner, K.; Suda, M. *Angew. Chem., Int. Ed. Engl.* **1976**, *15*, 314–315.



 $R_1$  = CH\_3, Ph, H, OTMS, 2-pyridyl-, 2-furanyl, 2 or 3-thiophenyl, CH\_2OR, CH=CHPh, -CH\_2(CH\_2)\_3CH\_2-

 $\label{eq:R2} \begin{array}{l} \mathsf{R}_2 = \mathsf{CH}_3, \, \mathsf{Ph}, \, \mathsf{H}, \, 2\text{-pyridyl-}, \, 2\text{-furanyl}, \, 2 \text{ or } 3\text{-thiophenyl}, \, \text{-}\mathsf{CH}_2(\mathsf{CH}_2)_3\mathsf{CH}_2\text{-} \\ \mathsf{X} = \mathsf{O}, \, \mathsf{N} \end{array}$ 

<sup>(10)</sup> For the intramolecular reaction of 6-(5-dialkylamino-4-pentyl)fulvene and enamines, see: Wu, T. C.; Houk, K. N. J. Am. Chem. Soc. **1985**, 107, 5308–5309.



for 30 min provided the pentalene derivative **2** in 81% yield as the only isolable product, (entry 1, Table 1). The structure of **2** was assigned on the basis of IR, <sup>1</sup>H and <sup>13</sup>C NMR, COSY, DEPT, HMQC, HMBC, MS, and HRMS analysis. This dramatic difference in the chemoselectivity between 6-dimethylaminofulvene (**1**) and alkylfulvenes may be due to an increase in the electron density of the 6-dimethylaminofulvene  $\pi$ -system. The formation of **2** may be rationalized by the stepwise mechanism shown in Scheme 2. Initial addition of **1** to maleic anhydride generates the zwitterionic intermediate. This is followed by nucleophilic attack at the C-6 position of fulvene to give the pentalene derivative **2**.

A series of homologous maleic anhydrides and maleimide were then reacted with various aminofulvenes to give the corresponding products 3-9 (entries 1–4, Table 1).<sup>13</sup> Reaction of 1 with maleimide afforded adduct 5. The structure of 5 was unambiguously assigned by single-crystal X-ray analysis (Figure 1).<sup>14</sup>



Figure 1. ORTEP plots for X-ray crystal structures of 5.

Reaction of various aminofulvenes with maleic anhydride and maleimide gave similar adducts **3**,**4** and **6**,**7** in good yields (entries 1 and 2, Table 1). Methyl maleic anhydride and **1** did not react in benzene at reflux; however, microwave irradiation provided adduct **8** in 63% yield (entry 3, Table 1). Unfortunately, we could not get  $\gamma$ -butyrolactone and **1** to react. In this case, the use of Lewis acids such as BF<sub>3</sub>• Et<sub>2</sub>O, AlCl<sub>3</sub>, EtAlCl<sub>2</sub>, TiCl<sub>4</sub>, etc. gave decomposition of fulvene and no other product (entry 4, Table 1). Reaction of the methylaminofulvene with 2-cyclopentenone did not give any reaction either (starting materials were recovered). However, the 1,4-alkylation adduct **10** (ca. 1:1 ratio of regioisomers) was obtained in the presence of catalytic amounts of BF<sub>3</sub>•Et<sub>2</sub>O at -78 °C (entry 5, Table 1).

Interestingly, reaction of aminofulvene and 2-cyclopentenone with 1 equiv of  $BF_3 \cdot Et_2O$  (reflux, 240 min) afforded the tricyclic product **11** in 65% yield (entry 6, Table 1). Milder conditions could be used for 6-dimethylaminofulvene (1 equiv of  $BF_3 \cdot Et_2O$ , 50 °C) to provide the tricyclic product **12** in 75% yield (entry 6, Table 1). Cyclopenta[*a*]pentalene adducts **11** and **12** are structural analogues of biologically active natural products incarnal,<sup>15</sup> pleurotellol,<sup>16</sup> ceratopicanol,<sup>17</sup> and hypnophilin.

Reaction of dimethylaminofulvene with dimethyl acetylenedicarboxylate and methyl propiolate provided the dimethylamine adducts **13**<sup>18</sup> and **14**<sup>19</sup> (entries 7 and 8, Table 1). A plausible mechanism for this transformation is shown in Scheme 3. Michael addition of the fulvene amino group to the triple bond followed by hydrolysis during workup affords 2-dimethylaminomaleic acid dimethylester **13**.

In summary, a novel one-pot [6 + 2] cycloaddition of fulvenes to maleic anhydride, maleimide, and cyclopentenone has been reported. This constitutes a novel methodology for

<sup>(12) (</sup>a) Butler, D. N.; Margetic, D.; O'Neill, P. J. C.; Warrener, R. N. Synlett 2000, 10, 98–100. (b) Klaerner, F.-G.; Breitkopf, V. Eur. J. Org. Chem. 1999, 11, 2757–2762. (c) Lonergan, D. G.; Deslongchamps, G. Tetrahedron 1998, 54, 14041–14052. (d) Nair, V.; Anilkumar, G.; Radhakrishnan, K. V.; Sheela, K. C.; Rath, N. P Tetrahedron 1997, 53, 17361–17372. (e) Nair, V.; Nair, A. G.; Radhakrishnan, K. V.; Nandakumar, M. V.; Rath, N. P. Synlett 1997, 7, 767–768. (f) Lonergan, D. G.; Riego, J.; Deslongchamps, G. Tetrahedron Lett. 1996, 37, 6109–6112. (g) Gugelchuk, M. M.; Chan, P. C.-M.; Sprules, T. J. J. Org. Chem. 1994, 59, 7723–7731. (h) Ho, T.-L.; Yeh, W.-L.; Yule, J.; Liu, H.-J. Can. J. Chem. 1992, 70, 1375–1384. (i) Chou, T.-C.; Jiang, T.-S.; Hwang, J.-T.; Lin, C.-T. Tetrahedron Lett. 1994, 35, 4165–4168. (j) Roth, W. R.; Bartmann, M.; Maier, G.; Reisenauer, H. P.; Sustmann, R. Angew. Chem. 1987, 99, 271–272.

<sup>(13)</sup> All new compounds were characterized by full spectroscopic ( $^{1}$ H and  $^{13}$ C NMR, DEPT, IR, MS, and HRMS) data. Most of them have COSY and HMQC data. Yields refer to spectroscopically and chromatographically homogeneous (>95%) materials.

<sup>(14)</sup> Crystallographic data for 5:  $C_{11}H_9NO_2$ , M = 187.19, monoclinic, space group  $P2_1/c$ , T = 293 K, a = 13.6525(16) Å, b = 8.1225(9) Å, c = 8.4007(10) Å,  $\beta = 97.529(2)^\circ$ , V = 923.54(19) Å<sup>3</sup>, Z = 4, D = 1.346 g/cm<sup>3</sup>,  $\lambda$  (Mo K $\alpha$ ) = 0.71073 Å, 5577 reflections collected, 2114 unique reflections, 127 parameters refined on  $F^2$ , R = 0.0661,  $wR_2[F^2] = 0.2174$  [1823 data points with  $F^2 > 2\sigma(F^2)$ ].

<sup>(15)</sup> Isolated from *Gloeostereum incarnatum*, with antibacterial activity; see: Takazawa, H.; Kashino, S. *Chem. Pharm. Bull.* **1991**, *39*, 555–557.

<sup>(16)</sup> Isolated from *Pleurotellus hypnophilus*, with antibacterial activity; see: Giannetti, B. M.; Steffan, B.; Steglich, W.; Kupka, J.; Anke, T. *Tetrahedron* **1986**, *42*, 3587–3593.

<sup>(17)</sup> Isolated from the fungus *Ceratocystis piceae* Ha 4/82; see: Hanssen, H.-P.; Abraham, W.-R. *Tetrahedron* **1988**, *44*, 2175–2180.

<sup>(18) (</sup>a) Schwan, A. L.; Warkentin, J. Can. J. Chem. 1988, 66, 1686–1694.
(b) Guzman, A.; Romero, M.; Talamas, F. X.; Villena, R.; Greenhouse, R.; Muchowski, J. M. J. Org. Chem. 1996, 61, 2470–2483.
(19) Roessler, U.; Blechert, S.; Steckhan, E. Tetrahedron Lett. 1999, 40, 7075–7078.



the synthesis of pentaleno[1,2-c] furans (anislactone and merrilactone skeletons), cyclopenta-[a] pentalenes (hirsutane skeleton), and pentaleno[1,2-c] pyrroles. We are currently pursuing the application of this methodology to the synthesis of various natural products.

**Acknowledgment.** We are grateful to Dr. Sepehr Sarshar for valuable discussions. Financial support from National

Science Council and National Health Research Institute are gratefully acknowledged.

**Supporting Information Available:** Crystallographic information files (CIF) for **5** and experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026103Z